The algebraic index theorem and deformation quantization of Lagrange-Finsler and Einstein spaces

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Deformation Quantization of Almost Kähler Models and Lagrange–Finsler Spaces

Finsler and Lagrange spaces can be equivalently represented as almost Kähler manifolds endowed with a metric compatible canonical distinguished connection structure generalizing the Levi Civita connection. The goal of this paper is to perform a natural Fedosov– type deformation quantization of such geometries. All constructions are canonically derived for regular Lagrangians and/or fundamental ...

متن کامل

Einstein Gravity as a Nonholonomic Almost Kähler Geometry, Lagrange–finsler Variables, and Deformation Quantization

A geometric procedure is elaborated for transforming (pseudo) Riemanian metrics and connections into canonical geometric objects (metric and nonlinear and linear connections) for effective Lagrange, or Finsler, geometries which, in their turn, can be equivalently represented as almost Kähler spaces. This allows us to formulate an approach to quantum gravity following standard methods of deforma...

متن کامل

Fedosov Quantization of Lagrange–Finsler and Hamilton–Cartan Spaces and Einstein Gravity Lifts on (Co) Tangent Bundles

We provide a method of converting Lagrange and Finsler spaces and their Legendre transforms to Hamilton and Cartan spaces into almost Kähler structures on tangent and cotangent bundles. In particular cases, the Hamilton spaces contain nonholonomic lifts of (pseudo) Riemannian / Einstein metrics on effective phase spaces. This allows us to define the corresponding Fedosov operators and develop d...

متن کامل

Generalized Lagrange Transforms: Finsler Geometry Methods and Deformation Quantization of Gravity

We propose a natural Fedosov type quantization of generalized Lagrange models and gravity theories with metrics lifted on tangent bundle, or extended to higher dimension, following some stated geometric/ physical conditions (for instance, nonholonomic and/or conformal transforms to some physically important metrics or mapping into a gauge model). Such generalized Lagrange transforms define cano...

متن کامل

Finsler and Lagrange Geometries in Einstein and String Gravity

We review the current status of Finsler–Lagrange geometry and generalizations. The goal is to aid non–experts on Finsler spaces, but physicists and geometers skilled in general relativity and particle theories, to understand the crucial importance of such geometric methods for applications in modern physics. We also would like to orient mathematicians working in generalized Finsler and Kähler g...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Mathematical Physics

سال: 2013

ISSN: 0022-2488,1089-7658

DOI: 10.1063/1.4815977